
"."

ED 073 163

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY

REPORT NO
PUB DATE
NOTE

DOCUMENT RESUME

TM 002 412

Gleser, Leon Jay; Olkin,, Ingram
Multivariate Statistical Inference Under Marginal
Structure, I.
Educational Testing Service, Princeton, N.J.
Air Force Office of Scientific Research, Washington,
D.C.; National Science Foundation, Washington,
D.C.
ETS-RB-72-40
Aug 72
81p.

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS *Hypothesis Testing; *Mathe

*Mathematidal Models; *Psych
*Statistical Studies

ABSTRACT
Statistical inference concerning

multivariate normal populations is considered. Se
which the parameters have certain hierarchical rel
discussed, in particular as related to testing the
psychological tests are parallel forms of the same
contains the following sections: Introduction; The Un
Structure; Maximum Likelihood Estimation; Tests of Hyp
Application. An appendix is titled "Derivation of the
Likelihood Estimators." 'References are provided. (DB)

atical Applications;
ological Tests;

the parameters of k
veral models in
ationships are
hypothesis that k
est. The report
derlying
otheses; and An
Maximum



U S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO.
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG
INATING IT POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU
CATION POSITION OR POLICY

MULTIVARIATE STATISTICAL INFERENCE

UNDER MARGINAL STRUCTURE, I.

Leon Jay Gleser
The Johns Hopkins University
and Educational Testing Service

and

Ingram Olkin
Stanford University

and Educational Testing Service

RB-72-40

This Bulletin is a draft for interoffice circulation.

Corrections and suggestions for revision are solicited.

The Bulletin should not be cited as a reference without

the specific permission of the authors. It is automati-

cally superseded upon formal publication of the material.

Educational Testing Service

Princeton, New Jersey

August 1972



Multivariate Statistical Inference under Marginal Structure, I.
1

by

Leon Jay Gleser

The Johns Hopkins University and Educational Testing Service

and

Ingram Olkin

Stanford University and Educational Testing Service

1. IntroCluction

In this paper we are concerned with statistical inference concerning

the parameters of k multivariate normal populations. Several models

are considered in which the parameters have certain hierarchical relation-

ships. These models may arise in a variety of scientific contexts, but

our concern with thi- problem originated in the context of testing the

hypothesis that k chological tests are parallel forms of the same test.

Suppose that we are utilizing k different (collections of) psychologi-

cal tests. These (collections of) tests have one subtest T
0

in common,

and are designed to be statistically equivalent (parallel) to one another.

The components of the g -th test can be represented as (T
0
,T

g
) , where

T
0

is the subtest common to all k psychological tests, and Tg is the

subtest peculiar to the g -th test, g = 1,2,...,k

In one possible experimental design, each of the k psychological

tests is given to a different-group of persons. The k groups of persons

are randomly constructed (of possibly unequal sizes), and are considered

to be (statistically) homogeneous with respect to the psychological traits

being measured. The score of a single person from the g -th group on the

Mork supported in part by the Educational Testing Service, the Air Force
Office of Scientific Research (contract F44620-70-0-0066) at Johns Hopkins
University, and the National Science Foundation (Grant GP-32326X) at Stanford
University.
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%

g -th test (T
0'

T
g

) is denoted by (x ') x g)/
, where x(g)( (N

0 ' 1
is the score

on subtest T
0

an
1

d x (g) is the score on the remainder, T , of the

test. The scores x (g)
'
x (g) may be scalars, or they may be (row) vectors,

depending on whether the subtests To , T themselves are considered to

consist of one, or of more than one, parts. However, the dimensions of

x
(1, (2) (k)
0 ,x0 ,..., and xo are the same (since they are scores on the common

(
subtest T

0 '
), and the dimensions of y

1

a)
' 1
x
;2)

... and x
1

k)
are the

same (since the subtests Ti,T2,..,Tk are designed to be statistically

equivalent to one another). To be specific, let us assume that T
0

con-

( ( (

con-

sists of q parts, so that the common dimensions of xo
)
,x0

)
,...,x0

)

are 1 x q , and let us assume that Ti,T2,..,Tk each consist of p - q

( (parts (q < p) , so that the common dimensions of x1
1)

' 1

2) (k)
x

are 1 x (p - q)

It is assumed that the score of an individual on any test has a

multivariate normal distribution, and that scores of individuals are

mutually statistically independent. Thus, in describing a statistical

model for this problem, it remains only to specify the mean vectors and

, ( (% , (covariance matrices of the score vectors kx0
1)
,x1

1)
hkx0

(2)
,x1

2)%

(1.10,4k))
These parameters are perhaps best described by a table:

Parameters

Group (Test)

1 2 ... k

Mean Vector

Covariance
Matrix

(Po
(1) (1)

'II] )

/
E
(1)

E
(1)

00 01

,(1)
L'10 L'll i

, (2) (2)x
"10 'Pl

/
, E(2) E(2 )4(k)

00 01

E(2) E(2)i

10 11/

i
...

(k) (

(PO 'Pl
k)

E(k)
00 01

E(k) E(k)
10 11
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(For the g -th group (the individuals who take the g -th test),
0
g)

is the expected score (vector) on the parts of-the subtest TO is
0

,
1

the expected score (vector) on the parts of subtest T
g '

E(g) is the co-
00

variance matrix among the scores on the parts of subtest TO , E (1g) is
1

covariance matrix among the scores on the parts of subtest Tg and

E 0g) = (E
10
(g)

)' is the matrix of covariances between scores on parts of

T
0

and scores on parts of T . We write

p(g) =
(1

g),11 g)) E (g)

/E(g) E(g)
00 01

E (g) E (g)
\ 10 11

g = 1,2,...,k

Thus, [1(g) is the mean vector and E(g) is the covariance matrix of

the distribution of the score of a single person from the g -th group on

the g -th test (To,Tr)

If the k groups are truly (statistically) homogeneous with respect

to the psychological attributes being measured, then, since all k groups

take subtest T
0'

we would expect

(1) (2) (1) (2) (k)H
/10 /10 4k) E00 E00 00

(1.1) E

to be true, regaiTiless of whether or not the k tests (T0,T1),(T0,T2),

.,(To,Tk) are parallel forms (statistically equivalent). The hypothesis

that all k tests are parallel forms is
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(1.2) H
mvc

. = E`
(2)

= (10 z(2) (k)
'

To verify that the k tests (T
0'

T
1

)
'

(T
0'

T
2

)
'

(T
0'
T
k

) are indeed

parallel forms, given that the k -groups are statistically homogeneous,

we can test the hypothesis H versus the more general alternative
mvc

hypothesis H ,
m vc

In some instances we may believe that the noncommon parts Tl,T2,...,Tk

of the k tests are not necessarily statistically equivalent, and we may

have some doubts as to whether or not the k groups hav9ctlea.,11,,.,/

performance on the common subtest T
0

(i.e., whether 12

(0 l)
=

(2)
= =

(k

0

)
). However, we may continue to believe that the parts o° subtest

T
0 have the same interrelationships (variances and covariances) in all

k groups. In such a case, our given hypothesis is

(k(1.3) H
vc'

: E(0 1)
-00
E(2 ) = E00

)

0

and we may want to test H
m

,

vc'
or H

vc
against this hypothesis. (Note

m

that H
mvc

implies H
m

,

vc'
which in turn implies H

vc
, .) Acceptance of

the hypothesis H
m'vc'

as against the hypothesis H
vc

, means that all k

groups respond similarly to subtest To --in other words, the k groups

cre marginally homogeneous in their response to subtest To . Acceptance

of the hypothesis H
mvc

as against H
vc

, means that the k tests are paral-

lel forms and that the k groups are homogeneous in their responses to

110Vthe tests (To,T1),(To,T2),...,(To,Tk) .

Besides hypotheses H
mvc

, H
m

,

vc
, , H

vc'
, various intermediate

hypotheses may oe of interest. For example, the hypotheses:
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(1.4) Hvc : E(1) = E(2) E(k)

and

(1) (2) (1) _.

L
(2) (k)

(1.5) H 11 po 1.e) = =
M'Ve

may be of concern. Figure 1 indicates the logical relationships among the

hypotheses (models) H ,

mvc ve: ,

m'

and H
vc

H , --.).H
m vc v c\s,

mvc \,, ___,a. vc4
H H .

--s---_\ liMW

Figure 1. Logical relationships among the hypotheses. An
arrow indicates implication. Thus, Hmve --4

H m'vc

means that hypothesis H implies hypothesis
H ,

mvc
m vc

The maximum likelihood estimators (MLE) of the parameters under the

various models (the models defined by hypotheses mvc H
m'vc'

h
vc' '

H
m'vc '

and H
vc

) are listed in Section 3 and derived in an Appendix at

the end of this paper. Using the results given in the Appendix, we may

obtain likelihood ratio tests (LRT) between various pairs of hypotheses.

These tests are given in Section 4. In general, the test statistics ob-

tained from the likelihood ratio approach hav distributions similar in

form to the distributions for the LRT for the multivariate analysis of

variance and-to the distributions for Wilks's lambda test for the equality

of covariance matrices (see Anderson (1958)]. The exact distributionare
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those of products o1 powers of independent beta variates, and are known to

be very complicated in form. .Howeverlby using the Box (1949) approximation,

we may obtain approximate levels of significance for these tests from a

weighted sum of chi-square distributions (see Section 4) A numerical

illustration of the computation and use of one of these likelihood ratio

tests in a practical context appears in Section 5; this practical example

is also used (and intrAuced) in Section 3 to illustrate the differences

in value of the MLE under the various models discussed in this paper.

Before entering into a discussion of the various estimators and tests of

hypotheses, however, we have a few further comments to make concerning

the underlying structure of the inferential problem.

2. The Underlying Structure

Recall that we have k groups of individuals, and that each indivi-

dual in the g -th g:?oup takes the test (TolTg) , g = 1,2,...,k . The

score for the i -th individual in group g is (xoi(g) ,xli(g) ) . If there

are N individuals in group g , then we need only consider the sample
g

means:

N

E

Ng

(2.1) g) = x(0 3-c(g) - 1R- (g)
1=1 01 1 xii

0- 1,1

and can summarize these means by 3i(g) (X(g)
/ 1
X(g))

If the subtests T
0

and T each have only one part (i.e., each

xig)T
0

and Tg are summarized by one score), then x
0

g)
and x

(g)
are

scalars. However, we need not be restrictive about this, since the theory
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applies even when T
0

and Tg each have several parts (and are sum-

marized
_

by several scores), and xo
g)

and xi
(g)

are vectors. For

example, suppose there are two groups, and the tests given to the groups

are made up as follows:

Tests given to Group 1:

Tests given to Group 2:

Essay Questions Multiple Choice Questions

To

T
1

T
0

T
2

T
0

T
2

That is, some of the essay questions and some of the multiple choice ques-

tions are taken by both groups, while other essay questions and other

multiple choice questions differ between the two groups. Suppose that

the common essay questions are summarized by a single score, the distinct

essay questions are summarized by a single score, the common multiple

choice questions are summarized by a single score, and the distinct multi-

ple choice questions are summarized by a single score. In this case,

(1) (2)
x
0

and x are (row) vectors with 2 components (i.e.
'

X(g) is
0

1 x 2 , g = 1,2 ), and x
(1)

and x
(2)

are (row) vectors with 2

components.

In the example provided in Sections 3 and 5, there are three groups,

and we have the following format:



SAT Verbal SAT Math SAT Verbal

Operational Operational Experimental

Test given to Group 1:

TO TO

Test given to Group 2:
1

1

To TO

4,

Test given to Group 3:

T
1

T2

T
0

T
0

T
3

In\VIis/case
'

T
0

has 2 parts (and is summarized by 2 scores), and T
1

,

( -( -(
T2 , and T3 have 1 part each. Hence xo

1)

3
, x

2)
, x

3)
are all 1 x 2

vectors, X( 3c(2) (3)
. 1 ' 1 , xl

are scalars.

Returning to our data, we can define sample cross-product matrices

(2.2) V(g)

where

V(g) y(g)
10 11

g 1,2,...,k ,

N

(2.3) v(g)
E
g (g) -(g) (g) -(g)

00 (x x )1(x0i xo )

Oi 0
i=1

(is the sample cross-product matrix for the vector xog) of scores of

group g on subtest T
0

, where

N

(2.4) V(g) E (x(0 ;-(
1g)),(x(0

- ;i(g))
la ; 11 1 1

1.1
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(is the sample cross-product matrix for the vector xig) of scores of

group g on subtest Tg , and where

N

(2.5) V(g) =

i 1

(x0i(g) X(g))'(x() - 3-((g)) , 1/1.g) = CeP
01 . 0 li 1

=

is the sample matrix of cross - products for group g between the scores on

subtest T
o

and the scores on subtest T . In the context of our first
g

example, V
(I)

and V(2) are both 4 x 4 matrices, and V
(I)

V
(2)

00
,

00 '

(1) (2(1(2
V
01 ' V O1

)

' '11

)

'
are all 2 x 2 matrices. In the contextV

11

)

of our second example, V
(I)

,
V
(2)

,
and V (3) are 3 x 3 matrices,

V
(I)

'
V (2)

'
V(3) are 2 x 2 matrices

'

V(1)
'

V(2)
,
and V(3) are00 . 00 01 01 01

2 x 1 matrices, and V
(I11 )

' 11
V

C,

2
)

'
V 11) are 1 x 1 matrices (i.e.,

scalars).

( (,
When all of the score vectors (x

0

g)

'

x1 '

g)
) have multivariate normal

distributions, and the performances of individuals on the tests are

mutually statistically independent, then it is well known that the mean

-(1) -(2) -(k)
vectors x ,x ,...,x and sample cross-product matrices V

(1)
IV

.(2)
,..,,

V
(k)

together are jointly sufficient for inferences concerning the param-

eters
(2) (k) (1) (2) ,(k)

g ,11 ,...,g
/ E

/
E ,01,0,,,L, of the model (see

Anderson (1958)). Let us assume that we have already reduced our test

score data to a summarization in terms of the quantities x
(1)

,x
(2)

1...,

(k)
x and V

(1)
,V

(2)
1...,V

(k)
.
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, -

It is known [Anderson (1958)1 that under the assumptions described

above, X(g) and V(g) are statistically independent of one another for

g = 1,2,...,k . Also
c;:(1),v(1)), (ii(k),v (k).

) are

mutually statistically independent. The distribution of i(g) is multi-

variate normal with density function

(2.6) p(X(6)= c(g)1(g)12 exp - 14-20- [(X(g) - p(g))(Z(g))-1(X(g) - p(g)),] ,

where c(g) is a certain constant depending upon p and Ng . The dis-

tribution of V(g) is Wishart with parameters n
g

= N
g

- 1 and .

The density function of V(g) is given by

(2.7) p(V(g)) = d(g)1(g)1
-n

g

/2

IV(g)I

(n

g

-p-1)

/ expo -Ntr V(g)(Z(g))-1]

where d (g) is a constant depending upon ng and p

Let

-
x

-(1) -(2) -(k
(x ,x ,,x )%

) V = (v
(1)

,v
(2) (k)

)

(2.8)

=
, (1)

,11

(2)
,,11(k)) = (z

(1)
,z

(2) (k)
)

To obtain maximum likelihood estimators (MLE) of p and E under the

,

.

various models described in Section 1, we need to maximize the likelihood

k
(2.9) p(;,V) = n [P(X(g))P(V(g))]

g=1



with respect to IA and E under the r' r 'ions upon these parameters

imposed by the hypotheses H , Hm, h
vc'

, H
m'vc

, and H
vcmvc

For simplicity of exposition, we summarize the MLE's for u and

under the various hypotheses in Section5; proofs of the results are

deferred to the Appendix.

3. Maximum Likelihood Estimation

In this section we summarize the maximum likelihood estimators (MLE)

of the parameters (u,E) for each of the five models ( H
vc' '

H
m'vc'AO ow.

H
vz

, H
m vc m

,

mvc
and ) described in Section 1. However, it is helpful

to first consider a reparameterization wnich simplifies the analysis and

helps to clarify our understanding of the results.

In three of the five models described above (namely, in Hv,, ,

H
m've

, and H
m'vc

), the restrictions on the parameters that are imposed

by the model concern the parameters of the marginal distributions of the

scores x(g) made by individuals on subtest T
0

. This, in the models

defined by H and Hm,
vc'

, the marginal covariance matrices

' 00 ' ',E0E000
(1) E(2) (k)

are constrained to be equal, while in the models de-

fined by H ,

m vc
and H

mive, the marginal expected score vectors

(1)

'120

(2) (k)
are assumed to be equal. To isolate the marginal

parameters u(g) and Zoo) , g = 1,2,...,k , we are led [Lord (1955),(

Anderson (1957), Bhargava (1962)] to consider breaking the likelihood

(2.9) into two factors: (i) the density function of the marginal quan-

tities R(1) 2(2)
_(k) ,(1) (2) u(k),...,x0 , voo ,voo

'''''v00
, and (ii) the conditional

density function of the sufficient statistic (X,v) given these marginal
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quantities. If we do this [see Equations -(A.1) and (A.2) of the Appendix],

we find that

(5.1)

ti
(g)

,
a(g) ti(g) - 11(0

0g)(E(0

))-1E(g)
1 01 '

ZOO)

(g) (g) -1 (,0g)

P (ZOO 1 '

and E°(g) = E (lg) )( ) -1E(g)
l 210 '200 ) 01 '

g = 1,2,...,k , appear as natural parameters in this representation. Note

that 0(g) is the q x p - q matrix of regression coefficients (slopes)

and a(g) is the l x p - q vector of intercepts for the regressions of

the elements of x(g) on x(g) (that is, E[x(g)lx(g)]= a(g) + x(g)0(g)) .

1 0 1 0 0

Further
' 11

E(g)
0

is the residual covariance
xig)matrix of x(g) after the

dependence of xi(g) on x(g) has been removed by regression. Thus,

the parameters in (3.1) are not only of interest in connection with

finding the MLE of (12,E) , but are also of interest in their own right.

It is nc' difficult io show that (1,,,z) and (3.1) are equivalent

parameterizations. Equation (3.1) represents 12
(0 g)

' , 00
a (g) E(g)

'

p(g) and E 11)
0

, g = 1,2,...,k , as functions of the parameters
.

(11,E) On the other hand,

iv
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(g
g = 1,2,...,k , represents (1,E) as functions of

(g)
, a

(a)

' ZOO

)

'

p
(g)

, and E11.0 , g 1,2,...,k .
(g)

Corresponding to2the parameters a(g) , p(g) , and 41)0 , we may

define the sample quantities:

(3.3)

a(g) = X(g)
_ cc(,,,g)(11((,)g))-1v,) , B(g) (vg))ivf) ,

V(g) = v(g)(v(g))-1v(g)
11.0 11 10 00 01 '

.4-'r-., (

for g.i.- , ..,k . Note [see-thelippendix] that xo
g) (g)

, a ,

r
(N

g
)
-r1 (g

V B
(g)

, and (N
g
)V

11.0GO

) are the respect:ve MLE of li
(0 g)

'

x

a(g) z(g) (g)
(g)

oo v "P
, and E(g) , g = 1,2,...,k , waen the parameters

(II (g) Z,(g) ), of e; distribution-of the scores for the individuals in anyIft\t
4cts

Ar'

one group are functifinally unrelated to the parameters 61
( 9,E (k)

) of

the distribution of the scores of the individuals in any other group,

g h .

!OA the "usua

follows, we refer to these maximum likelihood estimators

unrestricted)westimators of the corresponding parameters.

For example, we refer to B(g) as the "usual" estimator of p(g)

= 1, 2, ., k .

We are now in ition to give explicitly the MLE of the parameters

(11,E) under each of the models H , ;s4) IT1 VC
H H , and

Hmvc
described in Section 1. Calculatio \of these MLE will be illustrated

by the following practical example.



3.0 An Illustrative Example

The Scholastic Aptitude Test (SAT) of the College Entrance Examination

Board contains items designed to measure verbal ability and items designed

to measure mathematical ability. The test is given to a number of indi-

viduals at a time; different individuals who take the test may receive

different forms of the t., t. In each such form, certain verbal items

and certain mathematical items are common to all forms of the test.

Other items, however, differ from form to form. The common items are

used for the operational (measurement) purposes of the SAT; the differing

items are included for certain experimental purposes. Suppose k such

forms of the SAT exist. Then at a givdn administration of the test, each

form is given to the same number of individuals, and forms are assigned

to individuals by a process similar to the technique of (randomized)

systematic sampling used in sample survey designs.

The score on the g -th form of the SAT .can be summarized by three

numbers (scores): (i) the total score on those verbal items common to all

forms (SAT Verbal Operational Score), (ii) the total score on those mathe-

matical items common to all forms (SAT Mathematical Operational Score),

and (iii) the total score on those items peculiar to the g -th form

(SAT Experimental Score). The common parts (SAT Verbal Operational,

SAT Mathematical Operational) of each form constitute subtest TO in the

terminology of Sections 1 and 2. Thus, the score vector
O
(g) of the

i -th individual in the group of individuals taking the g -th form is

a 1 x 2 dimensional vector. The unique part (SAT Experimental) on the

g -th form constitutes subtest Tg , g = 1,2,...,k The score vector
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x(g) of the i -th individual who takes the g -th form of the SAT is thus

a scalar (a 1 x 1 dimensional vector).

In April, 1971, several thousand individuals took the SAT at testing

centers across the country. A sample of 100 individuals was chosen from

among all those individuals who took a given form of the SAT, for each of

3 different forms (T0,T1) , (T0,T2) , and (T0,T3) for which the experi-

mental items were comparable (in the present case, all experimental items

were verbal items). Thus, q = 2 , p = 3 , k = 3 , and N1 = N2 = N3

100 . The test data have been summarized in terms of the sample mean

vectors x
(g)

and sample cross-product matrices V (g)
, separately for

each form (group), g = 1,2,3 . These summarizations appear in Table 1.

Table 2 gives the "usual" estimators of the parameters (p.,E) and of the

parameters defined in (3.1). The values of these "usual" estimators serve

to provide comparisons to the values of the MLE of the parameters under

eachofthemodelsHirc
'

, ,

Hvc
H ,

H m'vc , Hmvc
, which we

discuss below.

3.1 Maximum Likelihood Estimators under H
vc'

We begin by considering the most general of the five models described

in Section 1. In this model, which is defined by the hypothesis H
vc' '

the score *vectors x (g) of individuals in all k groups have a commonOi

covariance matrix Zoo That is, under this model, the parameters (p.,E)

of the distribution of the scores are restricted to belong to the parametric

subspace co where
vc'

,
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Table 1. Summarization of Test Data for the Illustrative Example

N
1
= N

2
= N

3
. 100 , q = 2 , p . 3 , k = 3 ,

;'c(1) 03.86, 22.52, 14.77) ,

X(2) = (33.62, 25.45, 14.55) ,

3-c(3) = (36.05. 24.40, 16.21) ,

91,014

V
(1)

= 91,014 65,654 39,014

59,581 39,014 27,325

(1
IT` ' = 96,396

96,396
77,919 42,411

58,141 42,411 26,671

I, 104,106 71,115

1/.11 = 104,106 73,206 46,765

71,115 46,765 32,737)
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Table 2. The "Usual" Estimators of the Parameters (11,Z) for the

Illustrative Example

A(1) -(1)
g = x = (33.86, 22.52, 14.77)

1A1(2) Tc(2)
(33.62,

(3) -(3)g - x = (36.05,

E(1) Idu v

(2) 1 (2)- V .
100

Z(3) 1 (1-- V
100

(1401.64

910.14
595.81

(1349.80
963.96
581.41

1607.51
10'41.06
711.15

^(1) (33.86, 22.52)

^(2)
1.1 . (33.62, 25.45)

1.A1(3) . (36.05, 24.40)

25.43, 14.55)

24.40, 16.21)

910.14 595.81
656.54 390.14
390.14 273.25

963.96 581.41\
779.19 424.111
424.11 266.71/

1041.06
732.06 467.65
467.65 )27.37

(1)a = 0.3502 ,

(2)a = -0.0705 ,

^(3)a = 0.1328 ,

^(1)
z
00

^(2)
00

^(3)z
00

(1401.64

k 910.14

i1349.80
963.96

(1607.51
1041.06

910.14)
656.54

963.96)

779.19

1041.06)
732.06/

A(1)

^(2)

^(3)
P

(0.3928)

-0.0497!

!0.3608\

0.0980)

=
10.3E:30%

\0.1226'

^(1
Z

11.)0
19.82

^(2)
Z11.0 = 15.40

2(3) = 11.90
11.0
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, (1) (2) _(k)
= E00 E03 LOO EOCvc ! ' 00

E an arbitrary

q x q covariance matrix) .

(1 (2(k
Because the marginal covariance matrices E_

00

)

'
E
00

)

' '`,00

)
have a

common value E00 , the pooled estimator

k
1 1 (g)(3.4) 77 VI = E V00
II 00 N

g.1

k
for E

00 '
where N = E N , has intuitive appeal. Note that although

g.1 g

the hypothesis Hvc, puts no explicit restrictions relating the parameters

E (g01 ) and E(1g1
1 1

) to E0() and E(1h) , respectively, g / h , implicit

restrictions upon the relationships between these parameters are imposed

by live since

E(g)

/E E(g)1
00 01

E (g) E(g)
\ 10 11 /

must be a positive semi-definite matrix for all g = On the

other hand, Hve, imposes no restrictions (explicit or implicit)

E
(h)

relating the parameters p (g) and
11)0

to p
(h)

and E
11.0 ' g / h

.

g)
1.0This fact suggests that p (g) and E ( be estimated by their "usual"

1

estimators B (g) and (N
g
)-1V(g11.0 , respectively, g = 1,2,...,k .

Similarly, since live, imposes no restrictions relating the parameters

(g) and a(g)
(h)

0
for one group to the corresponding parameters 110

P.

and a(h) in any other group, g / h , we think of estimating these

parameters by their "usual" estimators ( 110 g by x(g) , and a (g) by() (

...--- --e
(g)

a , g = 1,2,...,k ).
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It is shown in the Appendix that these estimators, namely

ag)(vct) = 4g) , ti(g)(vct) a(g) ,

(3.5) i00(ve) = 214 E voo) (g)(vcf) = B(g)
g.1

E (ye' v
A(g) 1 (g)

11.0 N 11.0
g

are indeed the MLE of g (g) a (g) (g)
, and E (

,
00

,
11.g)0

respectively, g = 1,2,...,k , when the model defined by H
vc

, Lolds.

The MLE of (g,E) under Hve, can now be found by sto :..tituting (3.5)

into (3.2). This substitution results in the following MLE:

a(g)(ye) 6,;(()g),4g))
X(g)

,

(3.6)

E(g) (vet) )

00
(11g))-11.)

) "oo
(g) -v(g)(v(g))w (v(g))1v(g)

g

v(g)(g) boo 11.0 10 00 00 00 0110 00

for g = 1,2,...,k . The actual values of the MLE (3.5) and (3.6) for the

example described in Stf.)section 3.0 are summarized in Table 3.

Note that a(g)(ve) is equal to the "usual" estimator X(g) for

(g) ()
g , but that E''vc1) differs from the "usual" estimator (Ng) -V*

for E(g) . Indeed, the difference between E%(g)(ve) and (N
g
)31r(g)

equals
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Table 3. Maximum Likelihood Estimators under H
vet

for the

Illustrative Example

^(1)
(ve) . (33.86, 22.52, 14.77) ,

-(2)
1.1, (vet) (33.62, 25.43, 14.55) ,

(3)( /
0Vet)= 0.05, 24.40, 16.21) y

1452.98

i(1)(vet) = ( 971.72
619.04

(2)
1452.98

-(vc') = ( 971.72
61909

"(3) )( ve' 971.72
646.55

1)^(
110 (vc ) = (33.86, 22.52) ,

-(2)/
110 kvc

,

) = (33.62, 25.43)
y

^(0 3)(vc') = (36.05, 24.40) ,

971.72 61.).0 4
722.60 4;'

117.61 28.74

971.72
7'2.60 421.36
act. 36 '80.14

971.72
722.60 441.32
441.32 300.69

x-(1) (vct) = 0.3502

a-(2) (vet) = -0.0705 ,

&(3)1,-(t) = 0.1328

(vet) (1401.64 ,410.14i
00 910.14 6,6.54) '

(0.3928) 1,,(2)/ ,N (0.3601 ';(3)f t% (0.3630)
"L I 0.0497 Y P ye 0.0980 P ve I 0.1226

^(1) A) /*(3) t19.82 y (VC?) = Y Z11.01100 11.0
kVe / = 11.90



/ Iq
(g)

2(g)(vc1) - Lv(g). ( E V -- V )
1 (s) 1

N 00 N 00
(g) (g).-1 v

(g)
(v

(g)
)
-1

V (V )
s=1

10 00 10 00

where I is the q x q identity matrix.

3.2 Maximum Likelihood Estimators under H
vcm

In the model defined by the hypothesis HWye' ,
the scores x (g) of

Oi

individuals on subtest T
0

are assumed to be identically distributed

according to a q -variate normal distribution with mean vector 120 and

covariance matrix E
00

. That is, under the hypothesis H
m'vc' ,

the

parameters (1.1,E) are restricted to belong to the parametric subspace

m've' ,
where

41) 4k
%Ivo'

)
is an arbitrary 1 x q vector,

E
00

) = E
00

)
= E

00
is an arbitrary q x q covariance

matrix)

As is the case under H
vc'

, the hypothesis H
m'vc'

explicitly

requires E
00

)
,E

(2)

'

...,E
() to have the common value E

00 '
and

00 0

implicitly relates the parameters E(g) and E(g) of the distribution
01 11

of scores for one group to the corresponding parameters E(k) and E
(k)

11

of the distribution of scores for any other group, g / h . HDwever, as

before, H
m'vc

, places no restrictions relating the parameters (3
(g)

and E (g) of one group to the corresponding parameters (3
(h)

and E)
11.0 11.0
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of any other group; this suggests that we estimate p (g) and E11-0
( by

their "usual" estimators B(g) and (N )1V(g) respectively,
11.0 '

g = 1,2,...,k .

Because HWye requires that the marginal expected score vectors

//0

(1)

//'0
(2) (k)

must have a common value u
0 '

we can estimate u
0

by

the pooled estimator:

(3.7)
k

= 1 (g)
x

N
E Nx

0 0
g=1

The residual cross-product matrix

(3-8) A
00

N ((g) -
0
NX0 (g) -

0
)

0
g.1

k )

can then be combined with W00 =
00

to provide an estimator
g.1

-171

1

CW00 f A00)

1 (g) N
g
(x

(g
0
-)

0
)/(X(0 g)

0
)i

g=1
00

for E
00

Finally, since H
&vet

does not restrict the relationships

(1) (2) (k)
among a ,a ,...,a , we are led to estimation of these parameters by

their "usual" estimators a
(1)

,
a
(2)

., a
(k)

,
respectively.

In the Appendix we verify that the estimators

a(g)(m've) 61(g)(mtve) a(g)
0 0

(3.9) 200(m've)
f ,

)g
p'-'(mTvc1) B(g)
es(

^1( 1 (1.0(mtvc'

) =
N

V
11-g) 0



-23-

Eoo ,
(g) (

are respectively the MLE of [10 , a(g)
, and

- g)
'

g , under Hm,vc, . The MLE of the parameters (1,E) can

now be obtained by substituting (3.9) in (3.2). This substitution results

in the following MLE:

a(g)(m'vc') (4g)(mtvc'),4g)(m'vc1)) o, Xig) (X(()g) 570)(V00))-1VT)

A(g) 4 (
(m=vc) =-14,,(g)

)N
1(g110 (00 00 00' N 1.0

(3.10)

(W + A00)00 00 (w00 + A00)(v0)1 iv00T)

V(g10 )(V(g))-1(W
00

+ A
00

)(V00(g)130
00 1 '

for g = 1,2,...,k The values of the MLE (3.9) and (3.10) for the

example described in Subsection 3.1.R are summarized in Table 4.

3.3 Maximum Likelihood Estimators under H
vc

In the model defined by the hypothesis Hvc, scores by all individuals

(in any group) are assumed to have a common covariance matrix E , but

not necessarily equal expected score vectors. That is, under this model,

the parameters (p,E) of the distributions of the scores are restricted

to belong to the parametric subspace (bye , where

= {(1,E): E
(1)

E
(2)

= =
11(k)

= E , E an arbitraryvc

p x p covariance matrix}

The MLE of the parameters (u,E,) under this model are well known
0.0

(Anderson (1958), p. 2487:
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Table 4. Maximum LikelihoOd Estimators under H
m'vc'

for the

Illustrative Example

(1)
g (m'yc')

A(2)
g (m've)

A( )

(m'vc')

(34.31,

(34.31,

(34.31,

24.12,

24.12,

24.12,

15.10) ,

14.94) ,

15.61) ,

(l)(1VCI111

i,(2)(evci) =

(3) (eve') =

1452.98

971.72
619.05

1452.98
971.72

619.40

1432,98
971.72
646.55

971.72
722.60

417.62

971.72
722.60
421.36

971.72
722.60
441.32

619.05

417.621
285.74

619.4
421.36
280.14

64603\
441.32

300.69

)

1110(m'vc') (34.31, 24.12) ,

^a) ^
cc (eve') a (2)

0.3302 , (eve') A(3)-0.0705 , a (;1I'vc') = 0.1328 ,

A(1) (0.3928)A(2), "
(mtvc) 0.0497 ' 6 km vc

E (evc') 19.82 , 2T0(evc')^(1)

11.0

(0.3608) ^(3) ,
(0.3630

0.0980
, (m ve

0.1226)

15.40 (3)
110(m vc''

) 11.90

'
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a(g)(vc) = X(g) g ...,k ,

, k f

(VC) =
N

Z V(g) =

W =
(WOO W01) k

= L V(g)

W10 W11 g=1

Here, we did not need to use the equivalent parameterization (3.1) in

order to obtain MILE for (11,E) , since the results are directly and easily

obtainable. However, for the sake of comparison to the results given in

previous subsections, we can obtain the MLE of 4g) , a(g) , ZOV ZOO '
(g) (g)

P E P ) E11.0 E E110 )

where

=
/L00 00

''200 L11.0 PeLooP

by substituting (3.11) intc (3.1). The_ result of this substitution is the

following list of MLE:

cig)(vc) , a(g)(ve) . 4g) - 4g)w1401

(3.12) E (vc)
00 5 woo , (7c) wOlowol

- (vc) N (W11 W10W(30 01)

The values of the MLE (3.11) and (3.12) for the example described in

Subsection 3.0 are summarized in Trible 5.



Table 5. Maximum Likelihood Estimators under H
vc

for the

Illustrative Example

li(1)(vc) = (33.86, 22.52, 14.77)

12(2)(vc) = (33.62, 25.43, 14.55)

li(3)(vc) . (36.05, 24.40, 16.21) ,

S(vc) = 971.72
629.46

1h52.98

A(1)
p
0

(vc) =

A(0 2).
p (vc)

971.72
722.60

427.30

629.46
427.30 )

289.11,
.

(33.86, 22.52) , C1(1)(vc) = 0.1122 ,

(33.62, 25.43) a
(2)

(vc) = -0.2712 ,

A

^(3)p (vc) = (36.05, 24.40) , a(3)(vc) = 0.5673 ,

(vc)

% (1452.98
00 971.72

971.72\
, 13(vc).. (NT

7 ) 211.0(vc)
15.87 .
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3.4 Maximum Likelihood Estimators under H
m vp

(L 7
In the model defined by hypothesis H

m vp
, the scores of all

individuals on subtest T
0

haVe the same marginal distribution (with

common mean vector
0

and commoncovariance matrix E
00

). Further, the

scores of all individuals on the remainde of .qhe test have a common co-

variance matrix E
11

, but not necessarily a common mean vector (that is,

(1) (2) (k)

'111
are not necessarily equal). Finally, under H

'

the score x(g) of any individual on the common subtest T
0

serves as
Oi

an equally good predictor of the score x (g) of that individual on the

remainder T of the test, regardless of the group to which the individual
g

belongs. (That is, the correlations .between elements of x(g) and
Oi

element of x(g) are the same for all individuals i in all groups g.)

4Thus, under H
m'vc

the parameters (11,E) of the distributions of the

scores of individuals on the various tests are restricted to belong to the

parametric subspace
cpm'vc , where

cum'vc '

µ0l) µ02)
(k)

0
is an arbitrary

1 x q vector,

E(I) E(2) E(k)
E E is an arbitrary p x p

covariance matrix} .

The MLE of the parameters (11,E) can be obtained as special cases of

results obtained in a :orevious paper [Gleser and Olkin (1966)], or by direct
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analysis, as in the Appendix to the present paper. Note that the hypothesis

H
m'vc

implies the followirig;;I:tionships among the parameters defined

in (3.1):

(3.13)

(1)

110

E
(1)

00
=

(2)

0

E
(2)

00

= = g
(k)

0

E
(lc)

00

= g
0

E
00 '

(1) (2) (k)
R(1) p = p = (3,

E(1) E(2) E(k)
11.0 11.0

-
11.0 11.0

The hypothesis H
m'vc

imposes no restrictions concerning relationships

between a
(1)

,a
(2)

,...,a
(k)

, and indeed differs from the hypothesis H
vc

( ( (

only in imposing the relationship uo
1) uo

2)
= 110

k)
= uo on the

marginal expected scores of individuals on subtest To . This additional

restriction suggests estimating uo by the pooled estimator )70 defined

in (3.7), thus freeing the residual cross-product matrix A 00 to provide

additional information about E . Since under H we estimate E
00 vc CO

by (N) W and (N) 1W11.000 , 00
W01p , and E

11.0

.-

[14
11

W
10

W00 1W
01

]
,
respectively, the arguments used in Subsection 3.2 of

this paper lead us to think of estimating p and E
11.0

by W-1W and
00 01

(N) 1W11.0 ,

respectively, and to think of estimating E00
by using

OO-1CW
the pooled estimator

(N) A00]
Finally, since H

m
,

vc
imposes

no relationships among a(1),a(2),...,a(k) beyond those ilposed by H
vc

we can estimate a
(1) ,(2) "(k) by the estimators used to estimate
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-( -(ww
these parameters under H

vc
; namely, xl

1)
x0
1)w-lw

00 01'xl
-(2)

x0
2)

00 01'

..., and x
1

k)
- x

0

k)W
00

Tn the Appendix, it is shown that theselw
01

.

estimators:

ao(tri'vc) = a(g)(m,vc) = 4g)

(3.i1) i-oo(mtve) (W00 + Aoo )
, p(m'vc) = wOjowol

X11.0 W W-1W
11.0 N 11 10 00 01

g = 1,2, ...,k ,

are indeed MLE of the corresponding parameters. To obtain MLE of (.1,Z) ,

we can substitute (3.14) into (3.2), taking account of the equalities (3.13),

and obtain

(3.15)

'is(mtvc)

a(g)(m'vc) (a0(mtvc),4g)(m'vc))

-(g) (-(g) prlw )
= (x0,x1 xo xo oo ol

W00
A

00 00 (woo +

g = 1,2,,k ,

- -1
Wi0WOO NO '1'00) W110 WEN0 (WOO A00)W001431/

as the MLE of
()g (2)

,...,g
(10

, and E respectively. Values of the

MLE (3.14) and (3.15) for the example described in Subsection 3.0 are

summarized in Table 6.
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Table 6. Maximum Likelihood Estimators under H for the
m vc

Illustrative Example

(1)n (mTvc) . (34.51, 24.12, 15.15) ,

µ(2)(m'vc) . (34.51, 24.12, 14.77)

(mTvc) . (34.51, 24.12, 15.61) ,

2(mTvc) = 971.72
629.46 427.30 289.11

722.60 427.3o
1452.98 971.72

ao(mTvc) . (54.51, 24.12) ,

(1) -(2) ,,(3)
(mTve) 0.1122 , (mTvc) . -0.2712 , (mTvc) = 0.5673

) (1452.98 971.72) ;:d ,o.3750)A

Ioo(mTvc/
)

971.72 722.60, '-',111 vc/ =\o.o871/ / li.o
(Wye) = 15.87



-31-

3.5 Maximum Likelihood Estimators under H
mvc

Under the model defined by Hmvc the tests (T0,T1),(T0,T2),.,

(T
0'
T
k

) when applied to the k randomly chosen groups produce statistically

equivalent scores. That is, the scores (x(g)_. . for all individuals
01 ' (g))x

11

in all groups are identically distributed with identical expected score

vectors p = (p0,p1) and identical covariance matrices

1E00 E01
Z

E10
Z11

The model defined by Hmvc thus requires the parameters of the distri-

butions of scores to belong to the parametric subset (owe , where

(1)

c%Ivc ((2'1) 1.1

(2) (k)
s µ is an arbitrary

1 x p vector,

E(1) E(2) z(k) E is an arbitrary p x p

covariance matrix)

The MLE of p and E under H
mvc

are well known [see Anderson (1978)].

These estimators are
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N

k
a(mvc) = 5ENx

(g)
= x

g=1 g

(3.16) 2(mvc) = [ E V(g) E N (x(g) - 57)1(Te.(g) 31).)

g=1 g=1

1 r
= LW A]

The MLE of the parameters

-1
g , a = g g E E ,0 1 0 00 01

(3.17)

E
'

E-1E =E -E -1

00 E." 00 01 '

E
11.0 11 10

E
DO 01 '

are obtained from (3.16) through an obvious substitutica. The values of

the MLE (3.16) and the MLE (3.17) for the example described in

Subsection 3.0 are summarized in Table 7.

3.6 Some Comments

Going back over the lists of MLE under the various hypotheses, certain

general rules can be observed to be at work. The assumption of the

(1 (2(k
equality of the marginal covariance matrices E) E

00 '-00
) ,)

does not

affect estimation of the mean vectors g
(1)

,g
(2)

,...,g
(k)

(when compared

(g
to MLE for the mean vectors when equality of the E00

)
is not assumed),

(g) (g)but allows adjustment of our estimates of Eol and Ell through a
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Table 7. Maximum Likelihood Estimators under Hmvc for the

Illustrative Example

a(mvc) (34.51, 24.12, 15.18) ,

2(mvq) = 971.72
629.46 427.30 289.11

722.60 427.3o
1452.98 97.72

ao(mve) (34.51, 24.12) ;' C(mvc) = 0.1390 ,

971.72 722.601 ; 13(mve) =10.3750
0.0870) E11.0

= 15.87%0(mvc) =
(1452.98 971.72
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regression of the usual estimators (N
g
)1V01 (g) and (N

0-

)
11

on the

-1V(g)
, -1 (g)residual (Ng) N) Voo around the pooled estimator

00
- k

g=1

1 k
(N)- E vog

)
of the common value Zoo of E.

(1)
E.
(2) ,()

00 ' 00 / '
g=1

g = 1,2,...,k (see Subsection 3.1).

The assumption of the equality of the marginal expected score vectors

(1) (2) (k)
//10 '.../R , similarly permits us to adjust estimation of the

-(1) -(2) -(k) (1) (2) (k)usual estimators xl ,x1 ,..., and x(k) of ul ,u1 ,..., and ul

=
by regressing these estimators on the residuals xo

1)
xo,x0

2) 0"
and x

k)
- 7 around the pooled estimator 7. of the common value u

0 0 0 0
(1) (2) (kof u
0 ,/10

)
This assumption also frees the residual cross-

product matrix A
00

to help provide additional information for estimating

E00 when it is known that Z00(1) = E00(2)
E00) E00

The effects

of such adjustments on the resulting estimators are illustrated in Tables

2 through 7.

Although the adjusted estimators may provide superior accuracy in

comparison to the unadjusted estimators, the distributions of the adjusted

estimators are usually more complicated than the distributions of the

unadjusted estimators, and do not promise to be directly amenable for the

purpose of forming confidence regions for the various parameters. In

such cases, the indirect route of obtaining confidence regions for the

parameters (3.1) is often more promising, 'nce the MLE of these parameters

in many cases have tractable distributions. Since the basic distribution

theory for those estimators which do have convenient distributions is known
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Lsee Gleser and Olkin (1966), (1969), (1972a), Anderson (1958)], and since

our remaining distributional results appear to be too cumbersome for

practical use, distribution theory for the MLE is not given in the present

paper.

. Tests of Hypotheses

T.n previous sections we have described 5 separate hypotheses Hve, ,

H
m'vc'

, H
vc '

H
m vc

, and H
mvc

. These hypotheses specify relations

among the parameters of the distributions of test scores on k psychological

tests (T
0'

T
1 '
) (T

0'
T
2

) (T
0'

T
k

) . In Section 3 we summarized the maximum"
likelihood estimators (MLE) of the parameters under each of these hypotheses.

We also indicated what form the MLE of the parameters took under the general,

all-inclusive hypothesis, Ht , in which the parameters ( (g) ,E (g) )

of the g -th test score distribution are not necessarily functionally

related to the parameters ( g
(h)

,Z
(h)

) of any other test score distribu-

tion, h / g . In the present section, we describe statistical tests of

hypotheses which, upon the basis of the given test score data, allow us

to decide which hypothesis of any pair of these hypotheses best describes

the parameters of the test score distributions.

4.1 Likelihood Ratio Test Statistic

Let H
a

and Hb be any 2 of the 6 hypotheses: H
t '

Hvc"
H
mivd

, Hv
c '

H
m'vc '

and H
mvc

. For example, H
a

may be the hypothesis

Hmvc
and Hb may be the hypothesis H

m'vd
. Assume that hypothesis H

a

logically implies Hb In this case, classical likelihood ratio test
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theory suggests comparing Ha to Hb by means of the likelihood ratio

test statistic

max p(x,V)

(11,E)ew
(4.1) 2\

a,b
a i

max p(5W)
(11,E)ewb

where a
6

is the subspace of the total parameter space cut which cor-

responds to hypothesis Ha , and 90 is the subspace of the parameter

space which corresponds to hypothesis Hb . Since Ha implies cc
a

is included in cub , and thus max p(x,- V) < max p(x,- V) . Since rly
cc

'a

2\

b
> 0

,
it follows that 0 <

a,b
< 1 . Values of 2\

a,a, b
cl se to 1

favor hypothesis H
a

, while values of 2\

a ,b
close to 0 favor hypothesis

Hb If we adopt the approach of Heyman and Pearson to hypothesis testing,

we call H
a

the null hypothesis, and reject Ha (not necessarily in

favor of Hb ) if

(4.2)
a,b

< 2\*

where 2\* is a certain critical constant obtained from the null distribution

of 2\
a ,b

(that is, the distribution of Tab when hypothesis H
a

describes

the parameters ( 11,E )). If we wish to test H
a

versus Hb at a level of

significance of y , 0 < y < 1 , then we choose 7\4 to satisfy

(4.3)
P(?\a,b < 7\*) < , all (u,E) e cua

In very large samples (i.e., when Ni,N2,..,Nk are all large, and

of the same order of magnitude), it can be shown that the distribution of

-21og
a,b

when H
a

is true is approximatcly a chi-square ( X
2

)



distribution with f
a ,b

degrees of freedom. Here f
a ,b

is a certain

integer which depends upon the hypotheses Ha and Hb , and upon q ,

p , and k . Let X
2
(f,y) be that constant which is exceeded with

probability y by a random variable having a chi-square distribution with

f degrees of freedom. Then, in large samples, it follows from the above

discussion that the critical constant ?\* defined in Equations (4.2) and

(4.3) is approximately equal to expi-4X
2
(fab ,7)] . Hence, ;.1 large samples,

a likelihood ratio test of H
a

versus Hb , at a level of significar./e of

approximately y , rejects H
a

if

(4.4) Tab
exP[4X2(fab'7)]

Since H
a

and H
b

can be any 2 of the 6 hypotheses Ht,
Hvc'vc' '

and H
mvc

, a total of (26 ) = 15 pairs ofH
M'vc' '

H
vc '

H
m'vc '

hypotheses can be compared by means of a statistical test of hypothesis.

In 14 of these pairs of hypotheses, one of the hypotheses to be compared

logically implies the other, so that the classical likelihood ratio test

theory described above can be applied to construct a test of these hypothe-

ses. These 14 pairs of hypotheses are listed in the first two columns of

Table 8.

In one of the 15 possible pairs of hypotheses, however, neither of

the two hypotheses logically implies the other. This pair of hypotheses,

Hm'vc , and H , cannot be compared using the classical likelihood
ve

ratio test theory sketched above. We can, of course, construct a likeli-

hood ratio test statistic Tab of the form (4.1), but choice of a
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hypothesis to serve as the null hypothesis is arbitrary, ?\
-a,b

is not

necessarily bounded above by 1, and the. asymptotic distribution of this

test statistic under either H
m'vc'

or H
vc

is not necessarily the chi-

square distribution.. For these reasons, comparison of H versus
m vc

H by means of a statistical test of hypothesis would require an entirely
vc

separate analysis and discussion. Since it is unlikely that a comparison

of H
m vc

with H
vc

would arise as an immortant problem in psychological

testing contexts, we omit discussion of a test of significance for these

two hypotheses.

For each of the 14 pairs of hypotheses for which the likelihood ratio

test theory is applicable, we can construct the likelihood ratio test

statistic ?\
a ,b

by making use of the various maxima of the likelihood

p(x,V) described in the Appendix. For example, suppose 'chat we wish to

make a statistical test of H versus H
vc'

. Note that H logically
vc vc

implies H , so that H = H and lid = H , in this comparison.
vc a VC. vc

From Equation (A.38) of the Appendix (remembering that (p.,E) and the

parameterization in terms of the quantities defined in Equation (3.1) are

equivalent paramete.eizations), we find that

1- 1

(4'5)
1 11 1 -- 2,--N

13('V) H(V)I 101001 I 57w11-01
(p E)ect)

vc

where H(V) is defined by Equation (A.21) in the Appendix. Similarly,

from Equation (A.25) of the Appendix,

,1 1-,WN
1 V

1 (g) 1

IN
g

(4.6) max 13(91) = H(V)I i\T Ng 110
(1,)elyc,
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Dividing (4.5) by (4.6), we obtain the likelihood ratio test statistic:

max p(cc,V)

(14,E)ewvc
vc,vc' max D7c7VT

(4.7)

k

g=1

/
I V(g)
N 11.0
g

I

1

N IN 11.0

Once we have calculated the likelihood ratio test statistic 'N
a, b

then if the sample sizes Ni,N2,..,Nk are large and of the same order of

magnitude, we can test Ha versus Hb at an approximate level of

significance y by means of the test which rejects Ha if (4.4) holds.

Use of (4.4) requires knowledge of the constant f
a ,b

, plus access to

tables of the chi-square distribution. The constant f
a ,b

can be obtained

from the well-known asymptotic theory of likelihood ratio tests. Values

of f
a ,b

for each of the 14 possible tests of hypotheses are listed in the

fourth column of Table 8. Thus, the constant f , needed to apply
vc, vc

the likelihood ratio test of H
vc

versus H
vc

, in large samples is

given by (see Table 8):

(p - q)(k - 1)(p + q 1)
f
vc,vc' 2

Suppose that p= 3 , q= 2, k =3 . Then f = 6 If we want
vc, vc

to test H
vc

versus H
vc'

at level of significance y = 3.05, then in

large samples we would reject hypothesis Hvc if



< exp[-1X(6,.05)] .0018 .
vc, vc

In Table 8, we give the likelihood ratio test statistics ?\
a b

for 4

of the 14 possible comparisons of hypotheses (namely. H
mvc

versus H
m'vc

H versus H , H versus H , and H versus H ). For
mvc vc m vc vc m vc vc

the remaining 10 comparisons, we recommend a modification of the likelihood

ratio test statistic along the lines first suggested by Bartlett (1937).

From the modified statistic Lab given in Table 8, however, the liken-

hold ratio test statistic ?\

a ,b
may easily be obtained by merely sub-

stituting Ng for mg or ng , g = 1,2,...,k , and N for m or n

in the formula for L
a,b

For example, in Table 8, we suggest the

statistic

k
(4.8)

vc,vc'
g=1

for testing H
ve

versus H
ve

(here, m
g
= Ng - q 1 , g. 1,2,...,k ,

k
and m = E m ). To obtain

Svc vc' ,
we substitute N for m and

g=1 g , g g

N for m everywhere in (4.8); the result is the formula for ?\
vc vc',

already obtained in (4.7).

1.2 Bartlett Modifications of the Likelihood Ratio Test

Consider the likelihood ratio test statistic N
vc,t

for testing

H
vc

against general alternatives Ht . When k = 2 and N1 / N2 ,

it is known that the test of hypothesis which rejects H when
vc

A
ve,t

< 7* is a biased test [Das Gupta (1969)]. In the univariate
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case ( p = 1 ), Bartlett (1937) suggests modifying the likelihood ratio

test statistic for testing the equality of variances among k populations

by replacing the sample sizes Ng by the degrees of freedom ng of the

estimators of the variances of the g -th population, g = 1,2,...,k ,

everywhere these quantities (the N vs) appear in the formula for

the likelihood ratio test statistic. Anderson (1958; p. 249) proposes a

similar modification of the likelihood ratio test statistic ?\
velt

for testing the equality of the covariance matrices among k populations.

When N1 = N2 Nk , the likelihood ratio test statistic 2\
velt

and the Bartlett-toe modification L
vc,

,
u

(see Table 8) of this test

statistic are monotonic functions of one another, so that in this case

vc,t
and L

vc,t
yield equivalent tests. That is, if we construct

a test of H
vc

versus H
t

of level of significance y which is based

on ?\
vc,t

, and a test of H
vc

versus H
t

of level of significance y

which is based on L
vc,t

(and Which rejects H
vc

for small values of

vc,t
), then the test based on ?\

vc,t
ejects H

vc
if and only if the

test based on L
vc,t

rejects H
vc

When at least two Ng 's are unequal, however, the tests of H
vc

versus

H
t

based on ?\

vc,t
and L

vc,t
, respectively, are not the same. In

particular, the test based on ?\
vc,t

is biased [Das Gupta (1969), Sugiura

and Nagao (1968)]. The difference between the tests is most pronounced

for small and moderate sample sizes. For large samples ?\
vc,t

and L
vc,t

are approximately equal to one another, and a test which rejects H
vc

when
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L
vc, t

< exp[-2X
2(ve

t'7)]

has level of significance approximately equal to y

Next consider the test of H
vc

versus H
t

based on the likelihood
In

ratio test statistic Nm
vc,t

It can be shown [see Anderson (1958;

Chapter 10)] that

mvc,t mvc,vcTvc,t '

where N is the likelihood ratio test statistic for testing H
mvc,vc mvc

versus H
c

Anderson suggests that since a Bartlett modification of
v

N
vc,t

improves the properties of the test of Hvc
versus H

t
, the

identical Bartlett modification of Novc,t
will improve the properties

of the test of H
mvc

versus Ht . As far as the property of unbiased-

ness of a test is concerned, Anderson's conjecture is correct. That is,

whereas the test of Hmvc versus H
t

which rejects Hmvc for small

values of Nm
vc,t

is a biased test when the sample sizes N N ...,N
11 21 k

are not all equal, the Bartlett modification Limvct
of Nmvct

always
, ,

yield: an unbiased test. The test statistics Nmv
c,t

and Lm
vc,t

yield

equivalent tests when N
1

N2 = N
k

, and are nearly eaual for large

sample sizes, regardless of whether the sample sizes Ni,N2,..,Nk are

equal or not. The Bartlett modification of the likelihood ratio test

statistic Nmv
c,t

thus has greatest effect upon the properties of the

resulting test of Hmvc versus Ht for small or moderate sample sizes

Nl,N2,...,Nk , which are not all equal to one another.
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Bartlett modifications for the test statistics 7\ve,t
and 7\

m vc ,t

are justified by the same arguments used above to justify Bartlett

modifications of 7\
vc,t

and 7\mv
c,t

. In all of these cases the Bartlett

modification Lab of Tab
,

is formed by replacing the sample sizes Ng

by the degrees of freedom n = N - 1 of the appropriate estimator of
g

the covariance matrix ( (4 )
-1v(g)

as an estimator of E(g) in the; case
g

of 7\ and 7\ and (4 )
vc t mvc t g

-1v(g) as an estimator of E
00
° ) in(' i

, 00

the case of 7\
ve,t

and

in computing and analyzing

7\
m vc It

) in the formula for 7\ . Note that

7\
vc t

(or L
vc t

) and 7\
mtvc t

(or

L
m

(

ve t
xog), we can act as if only observations of scores of indi-,i )

viduals on subtest T
0

have been obtained.

Let us next turn to 7\

vc,vc'
. Note from (4.7) that

(4.9)

k

= II7\
vc,vc t

g=1

II

g=1

\ IN

1 g
N V11.01

g

1 N w11-01 /

1 111(g) INg 11.0

1

E V(g) I

1 N 11.0
g=1

yN
1 k

I E V(g)

N 11-0

I N wii.o I

2

It is known that V (g1-)

0
has a Wishart distribution with m

g
= N

q
- q - 1

1

(g) (gdegrees of freedom and expected value E(V
11-0

) = )0
, g = 1,2,...,k

11.

The quantity



/ 1 v(g)
k N 11-0'

(4.10) U = g

g=1 1 1
k(g)' v11-01
g=1

has the form of a likelihood ratio test statistic for testing the equality

of the residual covariance matrices E11)0 , g = 1,2,...,k against

general alternatives. [Indeed, it can be shown that U1 is the likelihood

1) (2) (k)
ratio test statistic for testing the hypothesis Z11.0 = E

11.0 11-0

against the hypothesis Ht .] Since

(4.11)

W W - W W1W
11.0 11 10 00 01

= V(g)
0

Z (B(g) - W001W
01 00

)1V(g)(B(g) W00 1W
01

)

11-
g=1 g=1

it can be seen that

(14-.12)

1
k
Z V11.0 I(g)j

g=1
U -

2 it W11.0 I

somewhat resembles the likelihood ratio test statistic of MANOVA. [Actually,

U
2

is the likelihood ratio test statistic for testing H
vc

against the

(1) ( ,(k(1 =hypothesis that Z11.0.=
]

2)

0 `11.)
and Z

0 ' 00
)

Z
00

)
=

= E(k) .] Using the arguments presented earlier which justified modifying
00

vc,t ,
it would appear that the performance of U

1
as the basis of a test
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of equality of covariances would be improved if in the formula ('..8) for U
1

we everywhere replaced Ng by the degrees of freedom mg of V1g1.)(

g g 0 ,

k k
g = 1,2,...,k , and replaced N , E N by m = E m Then, using the

g=1 g g=1 g

arguments used earlier to justhy modifying 7\
mvc, t ,

it seems appro-

priate to make a similar modification in the formula (1..9) for 7\
,

vc, vc

That is, we modify 7\ , by replacing Ng by mg , g = 1,2,...,k ,
vc,vc

and N by m everywhere in Equation (4.9). We call the resulting

statistic,

On

-1.V(g) I

k m 11.0

=
Lvc,vc' g=111 WI

m 11-0

the Bartlett modification of 7\
vc,vc'

. Since 7\
m
, vc,m've = 7\

vc,vc' '

7\ 7\ , 7\ . 7\ ,7\ , and
mvc,m've = 7\

vc,vc' mvc,m'vc vc,vc mvc,vcmvc,ve

7\ = 7\
,

, ,th it seems appropriate to make modifications
evc,ve vc,vc m vc,vc

of the likelihood ratio test statistics ',' 7\mve,m've ,m vc,w)i1vc1 '
2\

mvc vc
, , and 2\ ,

vc
, similar to the modification which we have just

, m vc,

made to 7\ , . These Bartlett modifications are exhibited in Table 8.
vc,vc

For every Bartlett modification Lab of a likelihood ratio

statistic Tab shown in Table 8, the following comments apply:

(i) A test of H
a

versus- Hb based on L
a,b

rejects H
a

when

Lab < L* ,

where L* is determined from the distribution of La b

when H
a

is true.
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(ii) When the sample sizes are equal L
a,b

and ?
a,b

are mono-

tone functions of one another and hence lead to equivalent

tests of H
a

versus Hb

(iii) When the sample sizes are unequal, and are either small or

moderate in size, the test of Ha versus Hb of level of

significance y which rejects H
a

when 7\
a ,b

<:?\* is not

the same test as the test of level of significance y which

rejects H
a

when L
a,b

< L* In certain cases, it is

known that the former test is a biased test, while the latter

test is unbiased. It is conjectured that the test based on

a,b
is always a biased test, while the test based on

L
a,b

is always an unbiased test.

(iv) When the sample sizes are large, Tab and L
a,b

are

approximately equal; further, the test which rejects Ha

when

a,b
< exp[-iX2(f

a,b'
7)]

and the test which rejects Ha when

L
a,b

< exp[ x2(fa,b' 7)] ,

both have level of significance approximately equal to y .

For each of the 14 pairs of hypotheses which have been covered by

our discussion in this section, Table 8 lists the test statistic ( ab

or Lab ) which is recommended for testing this pair of hypotheses, and
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the degrees of freedom f
a ,b

of its asymptotic chi-square distribution

under the null hypothesis ( H
a

). Table 8 also provides cross-references

to other articles (or to Anderson's (1958) textbook] in which some of these

hypothesis testing problems are considered.

4.3 Asymptotic Expansion for the Null Distribution

Each of the likelihood ratio test statistics listed in Table 8 is a

ratio of products of powers of determinants of certain random Wishart-

distributed matrices. The exact null distribution of each such test

statistic can be shown to be the same as the distribution of a product

of powers of certain independent beta variates. Thus [see Box (1949),

Anderson (1958; pp. 203-209)], when Nl,N2,...,Nk are all moderately

large (say, Ng > 3(p + k
2
) g 441,2,...,k ), the null ula,tive

distribution function of -2 log T
a,b,

where Ta
b

= Na
b

or Ta
b

= La
b

depending on the hypotheses Ha and Hb to be compared, may be

approximated as follows:

P(-21og Tab <
(1 4)a,b)P(X2(fa,b) < PaybT)

2
(4.13) + (1)

a,b
P(X (f

a,b
+ 4) p

a,b
T)

+ 0(N-3)
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where X
2
(f) represents a random variable having a chi-square distribu-

tion with f degrees of freedom, f
a lb

is the degrees of freedom of the

asymptotic null distribution of the likelihood ratio test statistic (given

in column 4 of Table 8), and (1)

a lb
and p

a lb
are constants depending on

Ni,N2,...,Nk , p, q, k, and the hypotheses ( Ha and Hb ) being

compared. Given a desired level of significance 7, we may use (4.13)

to obtain the critical constant T* for the test of H
a

versus Hb

which rejects Ha when

(4.14) Tab < T* .

To do this, we first find a number t
a,b

(y) which satisfies

(1 -
a,b

)PCX
2
(f
a,b

<) t
a,b

(7)) +
a,b

PCX
2
(f
a,b

+ 4) < t
a,b

(y))

(4.15)
=

Then

t ,(Y)
(4.16) T* = exp 4 ( .

Pa,b

Thus, an approximate test of significance of level y for Ha versus

Hb rejects Ha when (4.14) holds, where T* is given by (4.16), and

Tab = ab or Tab = Lab depending upon the hypotheses H
a

and Hb

which are to be compared.

Table 9 gives formulas for obtaining values of p
a ,b

and 0
a b

. With

few exceptions, explicit formulas for p
a ,b

and 0
a b

in terms of the basic
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dimensionsq,p,k
'

Nl,N2,...,Nk are very long and complex (this

is particularly the case for 0
a ,b

). Thus, for the sake of compactness,

we have found it expedient to give explicit formulas for p and 0 in

only a few cases; the other p's and O's in Table 9 are then expressed as

certain functions of these explicitly defined p's and o's. The functions

needed to achieve the above-mentioned compactification in Table 9 are de-

fined as follows.

Kf
a bpa b

+ f
b,c

p
b,c

(4.17) r(a,b,c;K)
' 'f

a,b
+ f

b,c

and

, 2 2
(4.18) 0(a,b,cpc)

1
-

(a,b,c;K)
,c

LK
2
P
a b

0
a b u

PL
b,cF,,

fa,bfb,c
(Kp a c;

12

4(fa,b fb,c) 'D'

Motivation for use of the functions defined by (4.17) and (4.18) can be

found in Gleser and Olkin (1972b).Here, we illustrate how to use these

two f.Anctions, and Table 9, to obtain pmv
c,m'vc' '

and 0
mvc,m vc

when

(as in the illustrative example of Subsection 3.0) q = 2 p = 3

k = 3 , and N
1

N
2

N
3

100 .

Looking at Table 9 and Equations (4.17) and (4.18), we see that to

determine
Pmv c , m' '

and 0
mvc,m've

, we need to first find the values

of f
mvc,m'vc ' Pmvc,m'vc I'mvc,m'vc ' fm'vc,m've ' Pm'vc,m've '

and 0m vc,m'vc''
Explicit formulas for these ivantities (in terms of p ,

q , k , e,...,Nk ) are given in Tables 8 and 9. From Table 8,
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= (P q)(k - 1) = 2fmvc,m'vc

_2)(p + q + 1)(k - 1) 6
fm vc,m vc 2

From Table 9,

a rid

2N - p - q - k - 2
Pmvc, m vc 2N

- .98333 ,

2 2
Sp - (1)Sk - 1)[(p - q) + (k - 1) - 5] =

mvc,m'vc 12(2N-p-q-k- 1)2

3 2 ,

1 1
Pm,

vc,m, vc
= 1 - E - y cl(P + 3 kR. qk 1)

g=1
mg m 6(k -1) p + q + 1) (p - (p + q + 1)m

. .99351

m vc,m vc

(p 3_ co 1 1
( E (

m
)
2

_ [(p - q)2 - i][p q + 2]
4802

-m' vc,m'vc g=j- g

- 6(k - 1)(p + q + 1)(1 - o
-m'vc,m'vc')

q(k 1)
t7(
r,,

13 + 1 - kg)
2 ,

+ (p - q
,2 ,

+ (k - 1)
2
q
2

- 5])
,

2

m

1873
0 .00002

(12)(2621)2



Thus, from Table 9 and (4.17),

Pmvc,m've
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M
1

)Lq(p q)2
q) 1]

g
+ q + 3)(k - 1)

p + q +

1.00020

From Table 9 and (4.18),

Omvc,m'vc , = 0(mvelevc,m'vt'; )

1 N 2 2 2
2 t( )

mvc,m'vc4'mvcIm'vc Pm'vc,m've'Dm'vc,m've'48p
mirclm've

mvc 'vc
f
m'vc eve

mvt,m'vc /jravc,m'vc - Pm'vtlm'vc'

)2)

1
, 222 %22 - tk ) (.98500)

2
(0)

2
+ (1.00076)

2
(.00002)

48(1.00444) 291

211.1 r 112 n % A

(

§
` 291

(.98500)
- 1.00076]

2
)

.000002
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In the above example, p p , and p
'mvc,m vc m vc, m vc mvc, m yc

were all close to 1, and 0
,

mvc,m'vc ' '1)m've,m've' '

and 4
mvc,m'vc

k re

all very close to O. This result is not excelltional. For every test of

hypothesis represented in Table 9, it can De sIlown that p
a ,b

1 and

0
a ,b

as N
l'
N
2' '

N
k

all tend to co. (This fact follows since the

limiting null distributionf -21og Tab is a chi-square distribution

with fa, degrees of freedom.) In general,
0a ,b

is closer to 0 in

large samples than p
a ,b

is close to 1. For example, in the case con-

sidered above, the three 0 -values were all 0 to four decimal places,

while the p -values were .98333, .99351, and 1.00020, respectively. When

0
a ,b

is very close to 0, but p
a b

is not so close to 1 that we can set

p = 1 without loss of accuracy, tab (y) may be found by setting

t
a,b

(y) = X(f
a,b

,y) , as can be seen by setting 0
a b

0 in (4.15),

and T* may be found from (4.16). That is, when 0
a ,b

is very close

to 0,

2
(fa b,Y)

Pa,b
I

Of course, when NN
2

N
k

are so large that p
a , b

= 1 and 0
a ,b

= 0"
(to several decimal place accuracy), then T* may be found from the

formula,

T* = exp -4 )((f
a,b

,y)
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5. An Application-

In previous sections, we have described the implications of the

hypotheses H
t

, H
mtvct

, H
vc

, H , and H for the psychological
ve mvc mvc

testing situation in which k tests (To,Tl),(To,T9),...,(To,Tk) are given

to k separate groups of individuals. If the k groups of individuals

taking the k tests can be regarded as k random samples of individuals

from a certain population of individuals, and if the environments in which

the k tests are given are homogeneous, then we would expect the distribu-

tions of the scores of individuals on the k forms (T T ) (T T )
0' 1 ' 0' 2 ' '

(T
0'

T
k
) to have parameters related by hypothesis H

mvc
if the k forms

are parallel, and by hypothesis H
mt ot

whether the k forms are parallel

or not.

If the assignment of individuals to forms, or individual-form pairs

to testing environments, has not been performed in such a way that dif-

ferences among the parameters of the k test score distributions can be

attributed solely to differences in the forms (To,Tl),(To,T2),...,(To,Tk) ,

then any of the hypotheses Hvc Hvc , or Hew may relate the param-

eters, or there may be no relationships among the parameters ( Ht ).

In this psychological testing context, an experimenter who believes

that his experimental design has made adequate allowance for individual

differences and environmental effects upon testing perfoimance would usually

start testing hypotheses by comparing the hypothesis Hoc (parallel forms)

to the hypothesis H
mtvct

In this section, we illustrate the test of

these two hypotheses in the context of the example described in Subsection

3.0. There, 3 forms (T0,T1) , (T0,T2) , (T0,T3) were each given to 100
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individuals. The subtest T
0

common to all 3 forms has 2 parts, while

the forms as a whole each have 3 parts. Hence, k = 3 , q = 2 , p = 3 ;

N
1

N
2

= N
3

100 .

From Table 8, the recommended test statistic for testing Hoc versus

H
vcm

is

3 1/11.0 I (WOO A
(5.1) a

mvc,m'vc'
g=1 im (W + A)

im

where ml = m2 = m3 = 97 , m = ml + m2 + m3 . 291. Because ml = m2 = m3 ,

and

where

Im (w A) I/ lit (w00 + A00) I It Q11.0 I

qii.o wil A11 (W10 Al° ) (woo Aoo )-1(wo1 Au )

we can rewrite Lmv
c,m'vc'

(5.2) L
mvc,m'vc'

in the form

/ 3 (g) 2(97)

II 11111 I

g.1 .°

Q11.0 13

From the data given in Table 1, we find that

V
1

(1)
= 1981.93688 , v 1.)0

1540.40294 , V(3) 1189.67254 ,
11.0 11.0

(2

40



and that

Q
11.0

4759.8120
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Note that INTIV01 VIV0 , g 1, 2, 3 ,
Q11.01 3 Q11.0

since

these quantities are scalars. Thus, from (5.2)

(5.3) L .00998 .

mvc,Ireve

In Subsection 4.3, we indicated that a test of H
mvc

versIIR H
, mtvc'

of level of significance approximately equal to y rejects Hmve when

and tm
vc,mive

( mve,mtvc t(y)

Privc,mtvci

is obtained from (4.15). Since

e 8 e 1.00444 e . 0.000002f
mvc,mtv Pmvc,mtv .mvc,mtv

we see from (4.15) that

and that

1. v2flot

tIIIVC.MtVe(Y)

X
2
(8gli

exp
I 1.0001

If we wish to test H
vc

versus Hmtve, at level cf significance y = 0.05 ,

then

X
2
(8, 0.05) = 15.507 ,



and

-63-

L* exp -L [ 5'507 ] .00044 .

1.10041

Since L
vc,m vc

is greater than IA 1 we cannot reject H
mvc

at the 0.05
m

level of significance. Thus, the three forms of the SAT can (tentatively)

be regarded as parallel forms of the same test.
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Appendix. Derivation of the Maximum Likelihood Estimators

In Section 2 we noted that the joint density function p(,V)

of the sufficient statistic (X,V) has the form

k

= H 1)(37c(g))1)17(g))

g=1

where p(X(g)) is given by Equation (2.6), and p(V(g)) is given by

Equation (2.7), g = 1,2,...,k . Adopting the approach to the derivation

of the maximum likelihood estimators which was mentioned in Section 3,

we break the likelihood p(x,V) into two factors: (i) the marginal

density function of X0 =
(1)42),...4k),

) and Voo =

V
(100

)) ; and (ii) the conditional density function p(X,V1X0,1700) of

(X,V) given
(c0,V00)

From (2.6), (2.7) and Theorems 2.4.3 and 7.3.3 of Anderson (1958),

the marginal density function p(;(0,V00) is

k

P(;(
o' V oo)

H p(X(g))-(IT(0)
0 - "00

g=1

1

k i(n -q-1) 211

(A.1)
g)t

= COC II ( IV I

g IE(g) I g
00 00

g=1

exp -1[Ng(X,c()g) - 4g))(4g))-107cg) 4g)), + tr(E00))-Yx1)]) ,

where C
0

is a certain constant. Since the conditional density function

p(,VIXo,V00) of (x,V) given (X0,V00) is equal to p(X,V)/p(i0,V00) ,

it can be shown that
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p(X,VIX ,V ) =
C1 (11/(g)14(1)-q)IV(g) I

1(n

g

-p-1)

IE(g) I g
0 00 1 00 11-0 11.0

exp 2(Ng(3-1g) - a(g) - X(()g)0(g))(4T)0)-1(4g) - X(()g)0(g))1

(A.2)
(g) (g) (g) (g) -1 (g) (g)%

+ tr V (B - )(E
11-0

) (B - j'
00

( (g) )-1(g) ])+ tr,E
11.0

/
11.0

where C
1

is a certain constant, the parameters a (g) , 0(g) and E
, E11)0 '

g = 1,2,...,k , are defined by Equation (3.1), and the sample quantities

B(g) and V(g)
11.0

, g = 1,2,...,k, are defined by Equation (3.3).

The joint density function p(X,V) of the sufficient statistic (X,V)

is t' product

IlL
(A.3) VI.r) = POc,V1)(0,V00)P(Si0,V00)

of (A.1) and (A.2). In Section 3, we have shown that the parameterization

of p(X,V) in terms of 4g) , 4g) , a(g) , o(g) , and 4T_)0 ,

g = 1,2,...,k is equivalent to the original parameterization of p(X,V)

in terms of g(g) and E(g) , g = 1,2,...yk . In this Appendix, we find

maximum likelihood estimators (MLE) of the parameters 4g) , 40) ,

a(g) ,
(g)

, and E(g)
0 '

g 1,2,...,k , under each of the hypotheses
11.

, and H . These MLE can then beHye , H
m've

, H
vc

, HWye

transformed (see Section 3) to obtain the MLE of the original parameters

g (g) and E (g)
, g = 1,2,...,k .

To obtain the MLE or he parameters under the various hypotheses,

we make repeated use of the following lemmas.
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Lemma A.1. Let Z. be given s x t matrices and H. be given s x s

r

nonnegative definite matrices, j = 112,...Ir . Assume that E H. is

j=1

nonsingular. Then for all s x t matrices F.

(A.4) E (Z. - 41H.
J

(Z. - = E (Z.
J

- .7=TH.
J

(Z. - 4
j=1 J j=1

Al
+ - )'( 4t.)

j=1

r %-1 r
where :::- = ( E H.) E H.Z. . Hence for all s x t matrices 17. and

j=1 J j=1 J J

any t x t nonnegative definite matrix AI

> E tr H.(Z. - 246(Z. -

J =1
J J j=1 J J

with ecruy in (A.5) if = 7=1 .

Proof. Note that

(A.6)
+ - 74,1-1.(z. - t + - - ,

J J J

A

A A
(z. - E)'H.(z. = (z. - F-TH.(Z. .71') CAL. EPH.(Z.: -

f- J

r rA
and that E (Z. - E)'H. = E H."(Z. - ::..9 = 0 . From these two facts,

j=1 J J j=1 .; J

(A.4) follows. Since for all F.:. (including the case when ::::: = :::::. ),

r r

- F46. ,

j=1 J J j=1 J J

and since trCE - 41( - 4(1 > 0 , (A.5) follows directly from
j=1

(A.4). For future use, note that



-67-

r A A A
(A.7) tr FOAM .E7 = tr E .Z - ( E Hi gi

J j=1 J J , JJJ =1

Lemma A.2. Let U be a given t x t nonnegative definite matrix, and let

f be a p' -itive integer. Then for all t x t positive definite matrices

A

(A.8) exp[-ltr A1U] < I u141 eitt ,

with equality holding in (A.8) if A . (1/nu .

Proof. This lemma is-a direct consequence of Lemma 3.2.2 of Anderson

(1958).

A.1 Maximum Likelihood Estimators under General Alternatives

From Equation (A.1),

k -q-1)

(A.9) P(3c0'V00)= c0( n NCI 6
]f(p.

0'-
E
00- '

g=1

( (
where [20 = 610

1)
,P.0

2) (k)

) Ea
,(2) (k)

() (Ea) 'Loa )

ly

f(11WE00) 1A(Ilo,Eoon) n dEg)17g oo 00
(exp(- exp(- tr(E )

(g) -1v(g)
])

g=1

(A.10)

an3.
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k
-(g) (g) (g)%-1 -(g) (g)%,

)A610'50) E N-(x0 40 )kE00 (z0 40 )

g.1

(A.11)
k

-(g) (g) (g) -1 -(g) (g)
= E

1

tr N
g
(x

°

- p
0

)(E
0

) (xo - P
0

)1

g=

Note that A(110,16) > 0 , with A(p0,E00) = 0 \-ff p(g) = x_(g) ,

g = 1,2,...,k . Hence

(A.12) f(p E ) < H
(IEoo

I g exp I
2
tr(E00 ))1v00 ))

g=1

( _(

with equality when p
0

g)
= x

0

g)
, g = 1,21.- ..,k . Applying Lemma A.2

to each term tithe product on the right-hand side of (A.12), we conclude

that

1 k

(A.13) f(P0
,E

00.
) < (I /-VN g)12

N
g e

-1-qN

g) = H I 1 V00 (g)I g

g=1 g g=1
N
g

with equality 4n (A.13) holding if p(()g) =
x(g) ' E(g) = (Ng) V00)

,

g = 1,2,...,k .

Let uz turn now to p(X,V1i0,V00) Let a = (0,(1),a(2),...,a(k))

(f3(3),f3(2),...,0(k),
) and E

11.0
= (E11)

0'
E12)

0'. -1k)0)
Define

10(14,1).0)

(A.14)

/-(g) (g) -(g) (g) (g) -1 -(g) (g) -(g) (g)
= E tr[N kx, - a - xo

)(E11.0) (xi a x0 13 ]

g=1 g

and



-69-

(A.15) E(0,E ) = tr(V(g) (B(g) - P(g))(E(g) )-1(B(g) P(g))']
11.0

g =1
11.0 11.0

Then from Equation (A.2),

k f (p-q) i(n -p-1)

(A16) p(ii,VIc ) = C1 II (Ivgil
-1-

10gi I) g
0V '00 1 00 11.0 h(c'' ,E11.0)

g=1

where

(exP D(C"'E11.0)ilexP E(Q' 1]-'13)]

(A.17)

It is clear by

and E(b
>--

and E(A,
fr E11.0)

H [W11 g exp[-itr(E(g)
0
)-1V(g)

0
])

.I"

21

0 11. . 11.
g=1

?-
inspection of (A.14) and (A.15) that D(9:, M11.0)

for all a ,
'

E
110

; and that D(0',1.3'.11.0)
-

if a(g) = a(g) = X(g) ;-cig)B(g) and B(g) = B(g)

g = 1,2,...,k . Further, from Lemma A.2,

11.)0
I

21 -, 4(p-q)N1 1

(g g exp(-itr(E(g11)
0
)-1V()

0
] < 11-1V(g)

0

2N
I

g
e

g
. 11. N 1.IE

g

with 4quality if E
11.0
(g) = (N

g
)-1V(11g)

0
, g = . Hence, we con-

.

elude from (A.17) that for all IZt , ,
'

e
-(p-q)N

I'Lli(g11)0 I g
g=1

N
g,

(A.18) 02, e,11.0)

with equality holding in (A.18) it' a(g) = a(g) , 0(g) = B(g) , and

(g)
E11.0 1(N 1V(g)11.g 0 / g 1/2,/k

0

0
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Let 0 = (1.1.0'E00,,P,E11.0)
' 00 (110'00) ' (41 (1:4'111.0)

Then 0 = (00,01) . The largest possible space of possible values for

0 is wt , where

and

w
t

(0:00 ew
0t' Oew1t )

'

0 t =
0 -

(P.
0'

E 0 ) P.(g) an arbitrary 1 x q vector and,-
E
00

) an arbitrary q x q positive definite matrix,

I g = 1,21 , k)

W
1 ,t

(0 =
-

E a(g)
1 'p '-11.0

) an arbitrary 1 x (p - q) vector,

((g) an arbitrary q x (p - q) vector, and Ellg.)

an arbitrary (p - q) x (7'1 - q) positive definite

matrix, g = 1,2,...,10

Let H
a

be .a hypothesis which restricts the parameters 0 = (µ0,

_00'
,a13,E

11.0
) to a subspace w

a
of wt of the form

(Da = Up. E. Ct 13 E ) (u E ) e a) and (Cx 13 E
-11'0 -0' -00 0,a -' -11.0) c (131,a)

where w
0 a

is a subset of w
0

and w1a
is a subset of w1t . It,,t , ,

then follows from (A.3), (A.9), and (A.16) that
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k % 1(
SUP P(cIII) = (Coe'
GEa) g=1

a

(A.19)

ctft,

that

][ sup
f(1/0/E00)]

90(1bla

[ sup h(alpIE )]
11.0

91"i,a

In particular, it follows from (A.13) and (A.18),

(A.20)

where

max p(5i,V) = H(V) 1I 1N fNg

eft g =1
Ng

(A.21) H(V) = CoCle-i0
iv(g)11(ng-7?-1)

g=1

The maximum in

a(g) = a(g)

(A.20) is achieved when 4g) = 3Z(()g) 1

(g) = B(g) and E (g) = (Ng)
11.0 g

) 1V11.0

since (as shown above) equality in (A.13) and (A.18) is

and from (A.19),

E00 ) = (N
g
)

00
V)

g = 112, , k ,

achieved for these

values of the parameters. Thus, the NIX of the parameters under general

alternatives are:

A(g) -(g) ^(g) 1 (g) ^(g) (g) A(g) (g)

-X ,E-V la -a 1p= BO

0 00 N 00
g

,(g) 1 (g)

11.0
V

N 11.0 '

for g = 1,21...1k and the maximum of the likelihood is given by (A.20).



A.2 Maximum Likelihood Estimations under H
vc

The hypothesis Hve, restricts the parameters 9 = (110'E00'a'f3'E11.0)

to the parametric subspace avc, described in Subsection 3.1. Note that

(A.22)
u

(9'
90 ' aO,ve, 91 c w1 t)

where

(2

(.b,vct ((µ0'E0)= (µ0'E0)): E0) E 90,t'

(1)

Eoo

)

410))

Let
00

represent the common value of
)

'

) (k)
under H

vc
.

Note that when E
(1)

E
(2)

= E
(k)

= E
00 00 00 00 '

(A.23)
f(µ0'50)

(expL4A(1.0,
50)1) 1E601

exp 4-tr E00

k (g)
where W = E .

oo e=1

g

oo

4g) = X(g)
o

1,2,.

conclude that when £(1)
'00

Since A (LL0'00) > 0 , with
'

A(p E
00

) = 0 ifX-
..,k , and by an application of Lemma A.2, we

z)_
,.. L)

oo oo oo '

(A.24) f(Po,Eoo) < IN wool
-4N

1

qN

for all p
0 '

E
00 '

with equality achieved in (A.24) if p0(e) = x(g)
'

g = and E00 =.
(N)-1W00

We conclude from (A.22), (A.19), (A.18), and (A.24) that

k g) I g(A.25) max p(X,V) = H(V)IN W
I -7

1N
n

1
vii.ol

4N

00
vc

, g.1 g
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As shown above, equality is achieved in (A.18) and (A.24) when

4g) =
XD (g)
(g) a(g) = a(g) , p(g) B(g) ,

El g)0Z(g)
0

= (N )-1V()
g 11.0

and when Z00 )

vc
under H , the

and Z
11.0

are given by Equation (3.5). The maximum of the likelihood
-

under Hve
is given by Equation (A.25).

)

MLE of 12

)

(1 )
,

E00

(N1-1w
00'

E00
(2)

Hence, it follows that-

E00
(k)

Ca I ' 7'" 'E00 '

A.3 Maximum Likelihood Estimators under Hm've

The hypothesis Hm,vc, restricts the parameters A = (20'
E11.0 )

to the parametric subspace coreve, described in Subsection 3.2. Note that

(A.26)
0,mivc"

Al
e

cult)ce
M've

= (9:

where

(1) (2) (k)

ab,mive ((tWzoo): (tIo,E03) wo,t ' Po
= = u .

and Z(1)
E(2) E(k))

00 00 00

Let p
0

represent the common

represent the common value of

(1) = p(k) = pP = p
0 0 0 0

(A.27)
f(LL0'E00) (exi"

where in this case

value of p01) p
(2)

" o
(1) (2) (k)Z...E
00 ' 00 ' 00

Z
(1)

= E(2) =
00 00

A(20'.%0)3)1E0012N

...,p
(k)

0
and E00

Note that when

(k)

00 00 '

N
exp -itr E00 w00

'

k _(g) -1,()
-

A(PO'E00)
=1
Z N, tr(x0 - PO)E00x0 0 )t

g
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Applying Lemma A.1, we find that for all
(' O'E00) cu0,m'vc' '

A(110,00) E tr N ((g)- ;0)(E00)-1(4g) 7(0)'
g=1 g

= tr(E
00

)
- E N

g °
(X(g) -

0
),((g) - ;

o
)]

1g=

, %1
= tr(E00) A00

where Ro ( N )-1 E N X(g) (N)-1 E N ;((g) . Thus for all

g g=1 g
0 g=1 g °

(10,z00) 6 WO,MIVCI

(A.28) f(p.
0'

E
00

) < IE
00

1'2." ern -ltr(E00
) l(W

00.
+ A

00
)

-- 2
,

An application of Lemma A.2 to the right-hand side of (A.28) yields

1
(A.29)

f(10'E00) IN + Aoo)I

for all (u
(1) (2) (k) ,...

with equality when 110 = 40 . ... = po = xo
-0'E00) c ab,m've '

and E
(1)

= E
(2)

-
0

... = E
(k)

... (N)
-1

(w
00

+ A
00

)

00 00 0

We conclude from (A.20), (A.19), CA.18), and (A.29) that

1

1

J._
N

k
1 1 (g) 1

-fN
g11

(A.30) max p(cc,V) = H(V)Iyi (Woo + A00)1 2 II I-- V 1 .

Ng 11.0
Occu

m vc

Since, as shown above, equality is achieved in (A.18) and (A.29) when

11(0 1)

=
11(0 2)

=
(k)

'

(1) z(2)
=

(k) (N)-1(w
00 0000

a( g) A(g) A(g) R(g) r(g) (N 11v(g)
' - ' -11-0 \-g' '11-0 , g

1'2'...'k ,
it

(1) (2) (k)
follows that under Hm,vc, the MLE of 110 = 110 --- = 110 = 110 ,
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z(1) z(2)
. z

(1) (2) 0(k)=
00 00 00 00 ' a ' (3 '

E
11.0

are given

s

by Equation (3.9)

The maximum of the likelihood under H
m'irc

, is given by Equation (A.50).

Ad+ Maximum Likelihood Estimators under H
vc

and H
n

The hypothesis
Rim

restricts the parameters A to the parametric

subspace:

(A.31) vc = (A:Aew Al ew_ )
0 0,vc" vc"

and the hypothesis H
m' n

restricts the parameters A to the parametric

subspace

'vc" (41 al, VC")M VC 0 0,m
(A.32) w [0:

where

(1)1,VC" ((a45L110): (a'P'E11.0) '

0(1) 0(2) p(k),

(1) (2) (k)
Ind Z

11-0
Z
11.0

E(k)

Let (3 be the common value of

be the common value of Z
(I) z(2)
11.0' 11.0'

(k) (1) (2)

' Z11.0 211.0

(A.33) D(110)
> 0 ,

21,°',_ Z

with equality achieved if

a(g) = i(g) - X(g)0
1 0

Also,

0(1)
0(2),

(k)

---,Elleo
(k)

= z z
11*0 110 '

(k)
, and let E11.0

Note that when (3
(1)

. (3
(2)

=

g = 1,2, ,k .
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(A34) E(p,z
E*, P' ' P)' (En.o'Eu.o' ))

k
E tr V(g)(B(g) - p)(E

11.0
)

-1 (g) 0
00

g=1

Applying Lemma A1 (and Equation (A.7))to (A.34), we find that when

E cui,v c" '

k 1

(V(ff(A.35) 0) > tr(E
11.0

)1 E ))-1V(g) - W W1W ]

g=1 1 0
00 01 10 00 01 '

(1) (2) (k) , k (g) -1 k (g) (g)
with equality achieved forq p p" ( E E =

g =1 g=1

l'`oo W

"
Hence, for all (p.,f3;i'",,, ) e tiL it' follows from (A.33)

W01 1, vc" '

and (A.35) that

(A36) h(a,P,E < IE -2"[exp -itr(4g)
11.0

) - 11.0 1.0 11411.0]

with equality achieved in (A.36) if a(g) = 4g) - Xc()g)W-0-jOW01 , g = 1,2,...,k ,

and S = W001W
01

. Applying Lemma A.2 to the right-hand side of (A.36), we

conclude that for all P, Eli.° ) 6 al, vc"

(A37) hta, p,E
1-IN e-i(p-q)N

-11.01 - IN 11.0'

--1Wwith equality achieved in (A.37) if (g) = xig) - xo(g) _W00 , P
(1)

p(2) p(k) -1w and Ell).- =
(k) /

00 01 , 0 ETC) E11.0 kNI- 411.0

We conclude from (A.31), (A19), (A24), and (A.37) that

1 4 N
IlN

.--

(A.38) max p(X,V) = H(V) I-N W00 I -W11.0 I

fN

Gal)
vc
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Since equality is achieved in (A.24) and (A.37) for 4g) = 3-4g) ,

(g) -(g) -(g) .,
CO (2)

a - xi xo 1,2,...,k , and for E00 = E00 = ... .
/400"01 , g

E(k) tolw a(1)
=

0(2) 0(k)
=
wlw (1) (2)

00 ' 00 ' '-'

. ...
00 01 ' E110 E11.0

E11)0 ' '

fo- 1W12.0
'

it follows that under H
vc

the MLE are given

by Equation (3.12). The maximum of the likelihood under Hvc is given

by Equation (A.38).

Similarly, from (A.32), (A.19), (A.29), and (A.37), it follows that

im

(A.59) max pUi,V) = H(V)120 + A )r"1N 'WN 00 00 11.0

m'vc

The maximum likelihood estimators of the parameters under Hm,vc are

given by Equation (5.14), as can be seen from the sufficient conditions given

above for equality to be achieved in (A.29) and (A.37). The maximum of the

likelihood under H
m'vc

is given by Equation (A.39).

A.5 Maximum of the Likelihood under H
mvc

The hypothesis H
mvc

restricts the parameters 0 to the parametric

subspace

(A.40)
wmvc (0: 9- w0 0,m'vc" Gl wl,m"ve)

where

(',0,E11.0)

a(1) a(2) a(k), 0(1) 13(2) 0(k),

(1) ,(2) = =
,(k)

L
11.0

=
11.0 11.0
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By applying Lemma A.1 separately to p(a
'
p
'
E
11.0

) and to E(P,E
11.0

)

when (a,p,E
11.0

) E
1,evc

it can be shown that
'

D(a'P'E11.0) E(e'.E.11.0) tr I(E11.0)
-1

E E Vig)(V!/))1VOT)
g=1

%,
+ All (W

10
+ A

10
)(W

00
+ A

00

-1
) kW

01
+

= =
with equality achieved when a

(1)
= a

(2)
= ... a

(k)
= xi - xo (woo A00)

-1

(W01
A ) and p

(1)
= p

(2)
R(k)

-1

01 01
, (w00 + A00)

-1(w01
A01)

Thus, when
(C:iA5E110) cui,evc" '

%-1
(A.41)

H11.0) 5- 1E11.0
exp -Ttr(E11.0)

Q11.0

where

Q
11.0

= W
11

+ All - (W
10

+ A
10

)(W
00

+ A00)
-1(W01

+ A01) .

Applying Lemma A.2 to the right-hand side of (A.41) yields the result that

1 14N e-1-(p-q)N
(A.42) h(a,

bE11.0) -. 1 17-1 Q11.01

for all
(a' P'EllO) c131,mnvc"

with equality when a(1) = a(2) = ... =
'

(k) = = -1 (1) (2) (k)
a

= xl - x0 (W00 + A00) (win + A01) ' 13 P P

E(1) E(2)
=
E(k) to-ln

(W + A )-1(W + A ) , and
00 00 01 01 11.0 11.0 11.0 -' '11.0

From (A.40), (A.19), (A.29), and (A.42) it follows that

1 - 1 -
(A.43) max PCX,V) if (w00 Ao0)1

will

if Q11.0 12N
Deco

mvc
1

= 10 r,)1 (w +po-



-79-

The maximum likelihood estimators of the parameters under H
vc

are given
m

implicitly in Section 3.5 (and explicitly above by the conditions for

equality in (A.29) and (A.42)). The maximum of the likelihood under mvc

is given by Equation (A.43).
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